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AERONAUTICAL SYMBOLS.

1. FUNDAMENTAL AND DERIVED UNITS.

!
Metric. : English. .
Symbol. —_ '
Unit. Symbol. TUnit. Symbol.
I}
i |
€ l 4 171 S m, foot (or miley...........| ft. (or mi.). |
Time..... ; t second...cciaceiaiiianannn sec. second (orhour)....... sec. (or hr.). |
Force ! F weight of one kilogram...... kg. weight of one pound....; lb. i
Power. . . 2 Kg.M/BEC. . ivenieiaaaaiiiecaaans horsepower..............| IP
Speed.. - . D/80C.cccececocennaeeonnnnn m.p.s. mihr................. MPH

2. GENERAL SYMBOLS, ETC.

Weight, W=mg.
Standard acceleration of gravity,
g=9.806m/sec.’ =32.172ft/sec.?

Mass, m= w
- (’

Density (mass per unit volume), p

Standard density of dry awr, 0.1247 (kg.-m.-
sec.) at 15.6°C. and 760 mm. =0.00237 (li.-
ft.-sec.) :

Specific weight of ‘' standard " air, 1.223 kg/m.?
=0.07635 1b/ft3 ‘

Moment of inertia, mk* (indicate axis of the
radius of gyration. &, by proper subscript).

Area, S; wing area, S, etc.

Gap, G

Span, b; chord length, c.

Aspect ratio=b/c

Distance from c. g. te elevator hinge, f.

Coefficient of viscosity, u.

3. AERODYNAMICAL SYMBOLS.

True airspeed. ¥ .

Dynamic (or impact) pressure, q=31, pl?
L:ft, L; absolute coefficient C'._=§—I§

Drag, D; absolute coefficient C.;=§g—

Cross-wind force. C; absolute coeflicient

C
C’c=q—s-
Resultant force, R
(Note that these coefficients are twice as
large as the old coefficients L., D..) .
. Angle of setting of wings (relative to thrust
line), tw
Angle of stabilizer setting with reference to
thrust line 2,

Dihedral angle, ¥

Reynolds Number = pl‘:-l where 1is a linear di-

mension.

e. g., for a model airfoil 3 in. chord, 100 mi/hr.,
normal pressure, 0°C: 255,000 and at 15.6°C,
230.000;

or for a model of 10 cm. chord, 40 m/sec.,
corresponding numbers are 299,000 and
270,000.

Center of pressure coefficient (ratio of distance
of C. P. from leading edge to chord length),
Gy

Angle of stabilizer setting with reference to
lower wing. (iv—ix'=8

Angle of attack, «

Angle of downwash, ¢
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REPORT No. 180.

DEFLECTION OF BEAMS WITH SPECIAL REFERENCE TO SHEAR
DEFORMATIONS.

By J. A. NEwLIN AND G. W. Traver.

INTRODUCTION.

This publication is one of a series of three reports prepared by the Forest Products Labora-
tory of the Department of Agriculture for publication by the National Advisory Committee for
Aeronautics. The purpose of these papers is to make known the results of tests to determine
the properties of wing beams of standard and proposed sections, as conducted by the Forest
Products Laboratory and financed by the Army and the Navy.

Many of the mathematical operations employed in airplane design are nothing more than
the solution of equations which are either empirical or are based on assumptions which are
known to be inaccurate, but which have been adopted because of their simplicity. These
inaccuracies of the formulas were not of primary consideration us long as the stresses used for
design were obtained by the test of specimens of the same form as those to be used, and great
refinement was not necessary.

The advent of the airplane and the impetus given to its development by the recent war has
created a demand for more definite knowledge of the limitations and proper application of the
common theory of flexure. There is probably no other field in which greater retinement in the
design of wooden members is required than in that of aircraft construction. The ever-present
problem of weight reduction has led to the use of comparatively small load factors and the
introduction of such shapes as are not commonly used for other construction purposes. Formulas
which give comparable results when applied to wooden beams of rectangular section have been
found to be considerably in error when applied to wooden beams of other shapes.

The tests were made at Madison, Wis., in cooperation with the University of Wisconsin.
An analysis of the results of these tests has furnished information which, when correlated with
that from other studies conducted by the Forest Service for the past 18 years. provided a more
exact method of computing the stiffness of wood beams and led to the development of formulas
for estimating the strength of beams of any cross section, using the properties of small ree-
tangular beams as a guide.

For convenience, the report of this investigation has been divided into three parts. The
first part deals with the deflection of beams with special reference to shear deformation. which
usually has been neglected in computing deflections of wood beams. The second part has to do
with stresses in beams subjected to transverse loading only. with a subdivision on nonsymmetrical
sections; and tne third part, with stresses in beams subjected to both longitudinal thrust and
bending stresses.

SUMMARY.

In addition to the deflection due to the elongation and compression of fibers from bending
stresses, there is a further deflection due to the shear stresses and consequent strains in a beam.
This is not usually considered in computing deflections of wood beams, though the modulus
of elasticity in shear for wood is relatively low, being but approximately one-sixteenth the
modulus of elasticity ir tension and compression, whereas for steel, for example, it is about

two-fifths the ordinary modulus. X
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By neglecting the deformation due to chear. errors of considerable magnitude may be
introduced in determining the distortion of a beam, especially if it is relatively short. or has
comparatively thin webs as the box or I beams commonly used in airplane construction. A\
great many tests were made to determine the amount of shear deformation for beams of various
sections tested over many different spans. As the span over which the beam is tested is in-
creased the error introduced by neglecting shear deformations becomes less, and the values
obtained by substituting measured deflections in the ordinary formulas upproach more nearly
the modulus of elasticity in tension and compression. For short spans, however, the error
is considerable, and increases rapidly as the span 1s reduced. This variation is illustrated in
Figures 3 and 4.

Two formulas were developed for estimating the magnitude of shear deformations. both
of which have been verified by tests. It is known that the distribation of stress assumed in
both formulas does not exactly represent the actual distribution of stress in a beam. Both
formulas check experimental results very closely when the calculations are made with great
refinement. It is not known which is the more accurate formula under these conditions, since
the difference in results obtained by the two is only a small part of the normal variation of
the material. The first formula, with its high powers and numerous factors, will obviously
lead one into inaccuracies due to the ordinary approxXimations used in calculations more readily
than will the second, or similar formula. In both formulas the deformation due to shear is

equal to éi{il, where P is the load on a beam of length I, F is the modulus of elasticity in shear.

and K is some coefficient depending upon the shape of the beam and upon the loading. The
formulas differ only in the determination of the coefficient K. TUnder the heading "*Analysis
of Results™ K by the first formula is shown and also by the second, or more simple formula.

The modulus of elasticity in shear was found to vary greatly according to the direction
of the grain of the ply wood in webs of box beams. It was found to be over three and one-half
times as great for beams having ply-wood webs with the grain at 45° to the length as for beanus
having webs the face grain of which was perpendicular to the length of the bean.

Although the tests showed conclusively that shear stresses are present in the overhang,
the change in deformation on this account did not prove to be of suflicient importance to take
overhang into account even with the most heavily routed I sections.

These tests show that the values of modulus of elasticity for small beams given in Bulle-
tin 536 ° are approximately 10 per cent lower than the true modulus of elasticity in tension and
compression. However, when substituted in the usual deflection formula they will give correct
values for the deflection of solid beams with span-depth ratio of 14, which is about the average
found in most commercial uses. The bulletin values are therefore recommended for use in the
ordinary formulas when ao corrections are to be made.  For solid beams with spans from 12 to
28 times the depth of beam the maximum error introduced by substituting these values in
the ordinarr formulas is about 5 per cent. For very short spans it would be well to use the
more exact formulas, which take into account shear distortions, using for the true modulus a
value 10 per cont greater than that given in the bulletin.

But in I and box beams, however, which have a minimum of material at the plane of
maximum horizontal shear stress, very considerable errors will be introduced if shear dis-
tortions are neglected even for relatively large span-depth ratios.

PURPOSE.

The purpose of the tests was to determine to what extent ondinary deflection formulas,
which neglect shear deformations, are in error when applied to beams of various sections and
to develop reasonably accurate yet comparatively simple formulas which take into acvount
such deformations. ’

1 Bulletin No. 336, United ~tates Department of Agniculture, “Mechagical Propesties of Wouds tirown in the United States,”™ by Jo AL
Newlin and T. R. C. Wilson.  ~
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MATERIAL.

The beams were made of either Sitka spruce or Douglas fir wing-beam material conform-
ing to standard specifications and had either box I, double I, or solid rectangular sections as
shown in Figure 1. The box and I beams. which were made of Sitka spruce, v = either 14
or.18 feet in length. The double T beams had Sitka spruce flanges and #;~'s—2", inch yellow

poplar ply-wood webs with the grain of
face plies in some cases perpendicular
and in other cases at 45° to the length
of the beam. The flanges were 2%
inches wide and 2 inches deep, the
depth over all was 8% inches. and the
length 14 feet 6 inches.  All the beams
of solid rectangular section were made
of Douglas fir. They were 21 inches
wide, 5 inches deep. and 14 feet 6
inches long.

It must not be construed that the
beams were tested only in the lengths
given above. \s tests for modulus of
elasticity were kept well within the
elastic limit, the length of the beams
could be reduced after each test and
another test run over a new span.

Torsion specimens were 24 inches
long and 2} inches of each end were
2 inches square.  For 18 inches the sec-
tion was reduced to a circular section 1}
inches in diameter. the square ends and
circular center portion being connected
by a circular fillet «f §-inch radius.

W

\?y_ 7 SN £

&'l4 front
44 rear

=4 yellow poplar
=43 | plywood.

' NN A
s ¥ A

%
%
%
%
%
%
7
2
%
%
7
%
4
Z
%
%
U
7
%
%

{41
. ~5 18
Fi. 1 - Sections of beams used for modulus of elasticity tests,

OUTLINE OF TESTS.

\. Beam tests:

1. Test for modulus of elasticity —

() Center loading.

) Symmetrical 2-point loading.

2. Moisture determinations.

B. Tests of minor specimens matched with the beams:

vy

. Statie bending tests of 30-inch specimens.

2. Compression-parallel-to-grain specinfens 8 inches long.
3. Compression-perpendicular-to-grain specimens 6 inches long.
1. Specific gravity determinations specimens 6 inches long.

5. Moisture determinations.

. Torsion tests:

Disks cut from all minor specimens.

1. Test for modulus of rigidity.

2. Moisture determination.

METHODS OF TESTS.

MODULUS OF ELASTICITY TESTS.

In order to eliminate the variability of material in vur comparison of different spans, the
<ame beam was tested several times. the span being changed for each test.  Since the relation
of modulus of elasticity in shear to the ordinary modulus of elastieity is not the same for different
beams and species. several beams were tested that we might learn something of its range. In
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some cases the ends were cut off to maintain a constant overhang and in other cases the total
length was kept constant as the span was changed. The accompanying tables show how spans
up to 18 were reduced by either 1 or 2 foot intervals to either 2 or 3 foot spans. Deflections
were read by referring a scale, attached at the center of the beam, to a fine wire drawn between
nails over the supports, or when greater precision was required, by observing the movement of
a pointer on a dial attached to a light beam resting on nails driven in the test beam over the
supports. A fine silk line attached to a nail at the center of the test beam passed around the
drum of the dial and carried a weight to keep it taut. Movements of the test heamn were so
multiplied that the pointer gave deflections to 0.0001 inch, whereas by the first method deflec-

Fi1G6. 2.--Torsion apparatus.

tions could only be read to 0.01 inch. The two methnds were never interchanged during a series
of tests on any one beam.

Two of the types of beams tested showed a decided tendency to buckle during test.  This
was overcome by using pin-connected horizontal ties, which prevented bending in more than one
plane.

Loads were applied by a 30.000-pound capacity testing machine, which was fitted with aux-
iliary wings to accommodate spans up to 18 feet.

Center loading was used in all except two series of tests.  The first of these series consisted
of tests of the <ame bheam over different spans. center and third point loading being applied
for each span. in order to determine the relution between the moduli of elasticity as computed
by the formulas for each condition.  In the ~c-ond series of tests the span was kept constant and
the distance between symmetrical loads changed in order to determine what effect. if any. the
distance between loads had on the modulus of elasticity as computed by the usual formula for
syvmmetrical loading.
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There were matched with all I and box beams, static bending specimens approximately
2 by 2 inches in section and 30 inches long, compression parallel test pieces 2 by 2 inches by 8
inches long, and compression perpendicular specimens 2 by 2 inches by 6 inches long.  These
minors were tested and specific gravity and moisture determinations made in accordance with
standard laboratory methods. :
A simple torsion apparatus was set up in an ordinary wood lathe.  Figure 2 is a_ photograph
of the machine. Load was applied in 25 inch-pound increments and the angle of twist read for
each increment over a 16-inch gauge length.  All torsion specimens were matched with stand-
ard 2 by 2 inch specimens which were tested in bending over a 28-inch span.  For further
description of the test see Description of figures and tables.

DESCRIPTION OF FIGURES AND TABLES.

Figure 1.—This figure shows sections of all beams used in modulus of elasticity tests
Such dimensions as 7 inches front ™ and “ 6} inches rear ™ indicate that two beams of that type
were tested, the words front and rear designating their position in the wing.

Figure 2.-—This is a photograph of a simple torsion apparatus set up in an ordinary wood
lathe. The right-hand wooden disk is set on ball bearings and has a wire passing around it to
a tray marked “load.” The smaller wooden disk at the left is fixed. The specimen is square at
the ends, which fit into the two wooden disks. The angle of twist was measured by the two
troptometer arms, each of which carries a string which passes around the drum of a dial.

2]3
Figure 3.—This shows the typical variation of the quantity ;. with span for a beam of

solid rectangular section loaded at the center.
Figure 4.—This shows a similar variation before and after routing a solid section.  The
amount of shear deformation is considerably increased by reducing the thickness at the plane

of maximum horizoutal shear.

. 107 K
Figure 5.—This figure shows the same variation.  The pa37 values, which are the average
E

from tests of three beams, are expressed as per cent of the true modulus of elasticity in tension
and compression.

Fignre 6.—Curve A shows the distribution of shear stress in a beam of rectangular section,
and curve B the distribution in an I beam with square ¢\ rners which was used as a basis for the
developments of the shear deformation formulas presented in this report.

Figure 7.—This figure shows the superiority of 45° ply wood as regards rigidity. Shear dis-

3 .
tortion being less the values of ASP—‘l& J e closer to the true modulus of elasticity for the beam with

15° ply wood.
- P .
Figure S. —In this dual figure is represented the variation of INAT with span for various

standard wing-beam sections as well as for a solid section. The beams were all made of

Sitka spruce and tested under center loading. The values of are expressed as per cent

PP
827
of the true modulus of elasticity in tension and compression.  The dimensions of these beams
are shown in Figure 1. In the upper row. from left to right, is the F-5-L, Loening, and TF,
and in the center of the lower row, the NC.

Table I.—In this table is given the mensured and computed deflections of Douglas-fir
beams of solid rectangular section loaded at the center. The formula used takes into account
<hear deformations usually neglected in such caleclations. The differences in the two values
are expressed as orrors in per cent of the measured deflection.

Tuble I1. —Here we have mensured and computed deflections for standard sections. For
deseription of these sections sce deseription of Figure 8. The computed deflections are
from two formulns, one taking shear into account and the other neglecting it. Errors are
expressed in per cent of the mensured deflections.
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ANALYSIS OF RESULTS.
If a solid beam is tested over different spans, load being applied at the center and measured
PP -
4SAT the resuiting vatues for spans greater than 20 or
25 times the depth of beam will be fairly constant, approaching the true modulus of elasticity
in tension and compression, whilé for spans below this ratio there will be a rapid decrease.
Figure 3 shows the results of just such a test. The beam was of Douglas tir, 2.75 inches wide,
+.97 inches deep. and was tested over spans starting at 14 feet and reduced by 2-foot b tervals
after each test to a span of 10 feet and then by 1-foot intervals to a span of 2 feet. Evidently
the constant value which this curve would approach with longer spans is about 1,600,000 pounds
per square inch.
In this test a constant overhang of 3 inches was maintained for all spans.  For some of the
comparisons described below this was impossible since it was necessary to maintain a constant

deflections substituted in the expression

DOUGLAS FIR BEAMS
SOLIO RECTANGULAR AND 1 SECTIONS
2400 Cenfer /oodinq
A True con-:pulb ted E = 2/54 000
| per‘ 5q ir. ! ]
OLID REC o%/aug ggra 5’0”4 7°x 275 S »/LJ l s %
SOLID RECTANGULA 1ON, 4.97"x 2.75" -3 ,
Cem‘er- /oadmg 2000\ Sotid rect 3 1] %»
T £ 5 5 T bearn N7 Ibearn.
77" ecom ufed =£59. 000 /b er s zn T
uemr persq 1600 # |
1
L/ 5
: 600 RRYE T [ o — Soir
«‘E 1400}~
o
] L1/
1800+
Q I
s /
/1000 L
25 | E
Qi P
¥ 800 :I [ 11 | ! 3
‘ | Moot T T 11T 1 [
! Curve /ineis theore /Ar:a/
i 600 variaotior.
— ~ : Foints ore measured
I <400 JIR deflections. | | |
[ [ | The solid bearm wos rou?: ™|
i 1 + ed,affer fest foary I+
i I f 200 ! beormn. Both beoms were |
I O | TN ! | tfested atsome sparrs.
o 2 <4 &6 8 _ /0 12 14+ /6 ; llll'l"'l
Spar n feet
5 o 5 20 25 30 35 -7 2 < [ 8 0 12 /14 6
Sparr depth ratio Sporrir feet
FiG. 3. —Relation of span to value obtained by substituting deflections in Fis. 4.—Relation of span to value obtained by substituting measured
;i,:,, deflections in -,!;g,,

over-all length with a consequent wariation in overhang as the span was changed. Observations
proved conclusively that shear strains crept out into the overhang, but the change in deflection
at the center due to this influence was too small to be measured.

Figure 4 shows the results of tests of a solid beam tested over various spans, after which it
was routed out to an I bean and again tested over the same spans. Both apparently are
approaching the same asymptote, but for all spans within practical limits the I beam iz censider-
ably below the solid bewn, showing that the shear deformations are greater for such a section
than for the solid one.  When we measure the deflection of a beam In test we measure not only
the deflection due to the lengthening of the tension fibers and the siertening of the compression
fibers but the deflection due to all other distortions of the fibers. If wa substitute this measured
value in a formula which does not take into account all such distortions we ean not expert a
constant resuit for all spans and forms of beams but something like what is shown in Figures 3
and 4.
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While it is recognized that any distortion due to a force producing bending moment is
reslected in the deflection of a beam, the only distortions that appear to be of a magnitude to
justify consideration are those resulting from the lengthening of the tension fibers and shortening
of the compression fibers and from shear stresses. :

The asymptote or constant value which these curves of Figures 3 and 4 approach is the true
modulus of elasticity in tension and compression, which we will call E;.  If we assume that the

DOUGLAS FIR BEAMS
SOLID RECTANGULAR SECTION, 5'x2%4
Center [oading
1 [ Trie computed modulus 1T
00 T \of elosticity =100% L | 1
R Lo
50 U et v
v o 1 o !
P i Lo b
5] 80 i I Vo H i
v i i !
g 70 ! i IR : i
Ny : . 11T
s 60 T
-~ \ L . — e -
¢ YR
Y s0 . fcch bearmn rested
3 — over all spans irr-
Q <0 ‘dicated by circles. -
= i foch port s av-i. .
N 30 ieroge of 3 bearmns. . _.
~ | R P [
205 i (. R
S8 P . ape
%20 Solid rectangulaor [* Beaomn
tearmn with square corners
0 F16. 6. Distribution of shear stress in nams,

IRET Lo
= & 8 o 2 =
o 4 Spar in feet

a 4 8 2 6 20 24 28 32 36
Span to depth ratio

Fu:. 3.—Relaticn af span-depth ratio to value t:maim'd by substi-
tuting measured deflections in PR
deformation due to shear is proportional to the moment. a point which will be proved later.
we may write
2 -
Pl KPJ,

MERETYTFE

where. >

A, = the deflection of a beam of span 1, loaded at the center with a load P,, and
F=the modulus of elasticity in saear.

For a span /[, with a lond P, at the center of the same beam we have

A= Pl .KP;";
*T48E.l T F

These two equations contain the two unknown quantities Er and , and hence the solution
of the two equations will furnish values of the true modulus Er and the shearing modulus F.
By making many experiments on the same beam instead of two and writing an equation for
each it is possible to obtain reliable values for these two moduli for that particular beam. From
the results shown in Figure 3 the true modulus of clasticity was found in this way to be 1.595.000
pounds per square inch and from the results shown in Figure 4 it was found to be 2.154.000
pounds per square inch. Figure 5 shows results similar to those of Figures 3 and 4. They are
expressed. however. in per cent of the true computed Er taken as 100 per cent. In this case each
point represents the average of three beams rather than the results of a single beam.

Since for ordinary spans the deformation due to shear is small in comparizon with the
deflection due to elongation and compression of the fibers, it was difficult to obtain reliable values

64935— 24—
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for F by the solution of simultaneous equations as outlined above,since the slightest errors in
measuring deflections for ordinary spans were reflected in F more than in E;. Torsion tests
were made for the purpose of checking on this value. which showed F for spruce to be about
1/15 E% and for Douglas fir about 1/17 or 1/18 E;.

Assuming a parabolic distribution of shear stress. as shown in Figure 6, expressions for
shear deformation can be determined by setting up an expression for internal work and equating

"7 71t to the external work done in producing shear distortions.

In this way, for a beam of solid rectangular section loaded at the center, we get:

0.3P1
S="4F

and for an I or box beain with square corners similarly loaded:

2 2 3
Fegins [e,(% K- KA K, +2 K2 K322 1{,5) + ';l (K K, —2 K K2+ K +4, ({-’3 1{,5)]

which may be written

KPl
f =7F

where,
K=l —8—1{5—1{%+0K=Ka-?-3’-1{~=)+'—=3(1f«1{-»K=K=+1fﬁ)+: -§-Ks)
8[.215:! ’.‘l"'.'llslt,zl"zl 1 115‘

where f=the deformation due to shear.
F =modulus of elasticity in shear
P =load at the center.
l=span.
-1 =area of cross section.
I=moment of inertia of the section.
K, =distance neutral axis to extreme fiber.
R, = distance neutral axis to flange.
. =width of flange.
t, = thickness of web; in box bea:ns combined thickness of webs.

The development of the above expressions is given in the appendix. together with expres-
sions for other conditions of loading. .

The above formula assumes (he parabolie distribution of shear stress on a cross section of a
beam, and the deflection due to shear is determined by the ordinary method of equating extern.!
work to Internal energy. It involves high powers and numerous factors which may lead to
inaccuracies when the ordinary approximations in calculations are employved. Consequently a
more simple formula was sought. '

The development of the second. a more simple formula, follows. In the two formulas
the same shear distribution is assumed, but in the second formula the fundamental assumption
is that deflections due to shear in any two heams of the same length, height, and moment of
inertia, which are similarly loaded. are proportional to the summations of the shear stresses
on their respective vertical sections. ' ' :

Let us assume that we have an I beam of a given length. depth, and moment of inertia, and
a rectangular beam of the same length, depth, and of a width to make its moment of inertia
equal to that of the I beam. The shear stress distribution would be as indicated in Figure 6.
Let us further assume that the shear deformations will be proportional to the areas under the

- . . 0.3P1
stress curve. Knowing the shear deflection of the rectangular beam to be _B-(;T when supported

at the ends and loaded at the center, we can determine f for an I beam similarly loaded by




DEFLECTION OF BEAMS WITH SPECIAL REFERENCE T()'.\"HE.-\R DEFORMATIONS, i1

multiplying this value by the ratio of the area under the shear stress curve of the I beam to the
area under the stress curve of the rectangle, which ratio is:

VR V., . [t

o T (K- K3 K, (!:— 1
‘ VA '

- 30

At —— - -— e e e ———

Referring to curve B, Figure 6

“R.2 "R TR
Hr= I,};“ and since ABF is a parabola the area ABFH =23 K, % ‘..,I;: = l.;];:

the total aren ABCDIH =area ABFH + area BCEG
Area BOCEG = v (K= KP) K, f+_ l) and th» total area

ey e K K, (),
S

ABCDH = 37ty

The area under the stress curve of the rectangular beam from the extreme fiber down to

. . (&
the neutral axis. must necessarily be sl

By our assumption the 17+ and I's will cancel and the deflection of the I beam will he:

_ B UG- KK, /t, \T0.3P/
f“[l I R (Il- ! ):] A F
where.

I =area of rectangle.  This value is readily expressed in dimensions of the I beam for, since
[ of T beam = [ of rectangle =2;3 b K7,

3 3 .. 3
b= 2R and .1, = TR w2 K, = Ky
and
i 5 (KF— KK, e N | PIES
~ R < \,r;—x) 10FT
which mayv be wntten
P S Ki KK =
-,.: [l]{l where A= { :—-_) ~la 1,71 Ay ([:'~ 1) ]]?)-_»I
i 1,

- Pr KPI . . . X e
The formula A= \qp7- p an be applied to I and box sections of irregular shape by first

reducing the given section to one of equivalent seetion. which i+ one whose height equals the
mean height of the beam and whose flange areas equal those of the beam. By using A for the
equivalent beam only a slight error will be introduced in the results.
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TasLE I.—Showing deflections determined by test compared with values eomputed by the formula.
PI3 03 Pl
A

TWEIT AT
DOUGLAS FIR BEAMS—NOMINAL 2] BY 5 INCHES—CENTER LOADING.

; -
| RG. ! R H. ! R K. R L. ; R M.
Fom 2005000, : Fue 1685000, : E= 1595000, E= 2227000, E= 19650,
Span. '
' [} ! ! 1 . : [
s s ———— - o = = «Com- - .| Error _Com- © Brror  Com- Error | Com- ! ., . Error Coam- ! ., ' Error
puted Tg“ (per . puted Tgst (per  puted ° T‘:“:" (per | puted | TOt  (per puted T:"
RY cent). A , cent). a centh. A cent). | 3
e | e— -+ e e ————— — _._. e = oo e e
+1.2 . 0.0421 § 0.0420 | (00410 | +0.7 | 0025 00305
+1.3° 08351 .ORIR ;L1037 1 —1.1 ) 00 0618 |
+0.5, .17 | .15 L1766 1 40,2 ] o882 0 1023 !
~0.5° .2852 1 2705 2wy =il o9l 1820
40,1 37120 L3R C3245 0 —O.8 L3NG 3062
—0.6 .5793 | .00 ! 620 1.0} _#T 4T4
—0.5  .8549 ° .R6Y 5485 . 4010 .39 | (553
................ el ] 304 w1 e | lew
¢ 1153 | sl Ri2 | 0.7 (e . 0
[ Yoo L4l L7 o =04 1.196 +0.8 | 1354 | 1.358 .
-0 1 . {0 L5363 LA - 0.3 P1a7a 0 40l Es L4290 -2
i ' i

§ .\"(;ﬂ:.——l-tach beam was tested over all the indicated spans. The error is expressed in per cent of the measured deflection. In the above
ormuls— -
A=deflection in inches.
P=load in pounds applied at the center.
I=moment of inertia of the section.
l=span in inches.
A =area of tha cross section in s«}usre inches.
E£=true computed madulus of elasticity.
F=the shearing modulus of elasticity taken in the computation as one-fifteenth the average tme modulus of elastacity .

Let us now see how measured deflections compared with those computed by the formulas.
Table I shows the results of tests on five rectangular Douglas-fir beams approximately 2} by 5
inches in section. True moduli of elasticity in bending were computed as outlined in this
analysis and the average found to be 1,918,000 pounds per square inch. The modulus of elas-
ticity in shear F was taken as one-fifteenth of this value, or 127,900 pounds per square inch.
The beams were supported near the ends and loaded at the center. Computed deflections were
obtained by substituting in the formula

PP 03 Pl
A=iQEIT AF
where .1 =area of the cross section.

The errors arc expressed in percentage of the measured deflections. The average F was
used for all beams, but in using E its value for each particular beam was substituted. An
examination of the table shows that test and computed values agree remarkably well.

In Table 11 are given measured deflections for the I and box beams, sections of which are
shown in Figure 1.

Deflections were computed by the usual formula

PP

A=iSEI

and by the more exact formula
A PP EPL

TASEIT F

where,
3,402 NEAW A ]
K is the quantity | | -:’_(A" I‘“ )f"(;—:- l) lit,—'i

— g

The irue modulus of elasticity i tension and compression was used in both formulas. The
shearing modulus F was taken as 99,000 pounds per square inch. or about one-eighteenth the
average true modulus of elasticity. Errors by the two formulas are expressed in per cent of
the measured deflections. An examination of the table will show at a glance how much more
closely the deflections can be estimated by the exact formula. For example, estimated values
for a 3-foot span by the exact formula check test results within 0 to i2.1 per cent, whereas

values by the ordinary formula are in error from 34.6 to 65.7 per cent.
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The great difference in the shearing modulus of elasticity of ply-wood webs with the grain
at 45° to the length of a beam and with the grain of face plies perpendicular to the length of
the beam is well illustrated in Figure 7. The section of the beam is that of the double I shown
in Figure 1. .\ pair of beams were matched throughout. the only difference in the two heing
in the direction of the grain of the ply-wood webs. Both were tested over spans from 2 to 14

SPRUCE BEAMS
DOOUBLE TL SECTION WITH POPLAR WEBS
L e e ot s——e - o 1t ® e e - Center loading

TTT LT T[]
F—a—ta*3y; d="¥s €207s5]
Kl 6-6% [stk"[ ;ezgz____
%2, T 0UE A plywood ]
—1 A-Beom with grain of_|
plywood af 45° for

g | o length of beorrr. T
L1 B-Bearn with grain of —
foce plywood perper-|
dicutor and core per--
-alle/ ﬁo/enq'ih of beorn.

—

| et Al
i BB

X

LB}

:

1000000 y <

t

P4 ! K
Note:- Curve: |
T hine IS comput=
¢ {- ed deflections.— -
/ Poirts ore meass |
{  / ured deflections.;
'_"'"} 7 —1 Bearm cut after eochHr T
test to mairtain constart ..

in Ib per sq in.

P12
4841

L EERE

overtiong of 3 for oll spars.
I I I IR I O

C R & 9 12 14 1
e /ﬁf"? 2 6

re
Fiu. 7.—Relation of span to value obtained by substituting deflectoms in 8al’

feet, and the points indicate the results of these tests. The full lines were obtained by sub-
stituting in the formula
PBR  KP!

wEIY FC

For the beam having ply-wood webs with the grain at 45° to the length of the beam,
353,000 pounds per square inch was used for £, and for the beam in which the face grain of the
ply wood was perpendicular to the length of the beam, 99.000 pounds per square inch was
used. the shearing modulus in the former case being over three and one-half times that required
in the latter case.

With the aid of the complete deflection formula we can determine the error for any span
introduced by neglecting shear deformations.

A=

Now. in substituting measured deflections in 4P§I the ordinary formula for center loading,
b:

we get:

Eo— PB

“e= . PP KPI)

8 S
S ygpyF
since, as shown above:
A PE  RPl

TI8E.d T F
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This value E, has been plotted for various spans in Figure < for a rectangular beam and
for a few standard I and buk sections Ky was taken as 100 per cent and F as 1?75
E-= true modulus of elasticity.
E. = 455 I where A = measured detlection.
F =modulus of elasticity in shear.
. K =a constant. for.the section. .Taking F for spruce= 15'5

For extremely short spans in which the shear deformation might be as much as one-half the
total deformation we might anticipate that deflections of beams loaded at the third point would
give considerably different values for E. when substituted in the usual formula than would
deflections for beams loaded at the center. The shear deformation in both cases is proportional

SITKA SPRUCE BEAMS
SOLID AND STANDARD WING BEAM SECTIONS
Cenfer loading
(R)= Rectanquiar,i(= 0.3+A; A= Areaof section.
(1) = F-5-L reor beorn, K=0903 [Equation of Curves)(5)= Loering rear beorn, K=0714
(2= ~ fromt =« #=0779 |E =L _____|(6)= - fromnt -  ==0600
(3) = N.C.rear I3 flange K=0474 I1r  48K11.75 [(7) = T.F. reor <« ==1/60
“4) = =« front - - - = 0454 100 100 8) - - fromt - «=0806
9=True E=/00% 10 = Usuol computed E for 2«2, 28 spon.
. . ' ; . N T . N
R 4;.4'....’*@:_;_.- e ——e e
/! 00
wy 80 Ly 80
y s
< <
5 K
S 60 S 60
c c
v O
¢ o
g 3
N <0 < <40
- ™~ - I:’
3 o~y %
a, g & %
a0 20
a 8 6 24 Je <0 g & 16 pe 3e <0
Sparr to depthr ratio Spen to ceph rato

rp
Fli. S~ Relation of span-depth ratio to value obtained by substituting measured deflections in Js5al’

to the stress. but for equal stresses the deflection of a beam loaded at the third points is greater
by ‘1-\ Assuming the deformation due to shear in the case of the beam loaded at the center

0.30 of the total deflection. E. would be 50 per cent in error.  Then for the third-point loading
the shear deformation is numerically the sume because of equal stress. but the deflection due

Y

. . .23 . .
to change in the length of the fibers is 18 8 much as in the former case and our errer s now

approximately 11 per cent. or a difference of only 6 per cent.and this only in an extreme case.
For all practical purposes we could neglect thLis difference and assume our error equal in the
two cases.

An examination of Figures 3. 4, and 8 would indicate that the moduli of elasticiy given
in our Bulletin 536 for small clear specimens tested over a <pan 14 times the depth of <pecimen
are about 10 per cent below the true modulus of elasticity in tension and compression.  This is
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true: it is a value obtained by substituting measured deflections in the usual deflection formula
neglecting shear deformation. However. if this value is in turn used to estimate the deflection
of a solid rectangular beam by substituting in the usual formula we atrive at the correct deflee-
tion provided our span is 14 times the depth. For ordinary spans. say from 12 to 28 times
the depth. the error would be within 5 per cent.  For rectangular beams used in ordinary lengths
then we would not vitiate our results to any great extent by using these values of modulus of
elasticity in the usual formula.

In the design of box and I sections with relatively little material at the plane of maximum
unless the more accurate method of determining the elastic properties of a beam is emyployed.
For some sections tested the error introduced at a span of 14 times the depth was over 35 per
cent as against 10 per cent for a solid rectangular beam.

CONCLUSIONS.

Because of the magnitude of shear distortions it is often necessary to calculate the elastic
properties of wood beams by formulas which take into account such distortions. This is
especially true for box and I beams which have the material distributea in a way to take care
of maximum tensile and compressive stresses. which means a minimum of material at the plane
of maximum longitudinal shear. The shear deformation is proportional to the moment to

g &J

which the beam s subjected and may be expressed by I‘va *where P is the load on a beam of
span [, F is the modulus of elasticity in shear, and A a coefficient depending upon the shape of
the cross section and upon the loading. Twe formulas for the determination of A have been
developed.  The first is a rather long formula developed by ordinary methods. the second 2
simpler formula and more empirical in its nature. Both check experimental results very closety,
but the second formula is recommended because its use involves less labor and offers less oppor-
tunity for error.

Usually shear deflections are neglected. and deflection determined bsy test when substituted
in the usual deflection formulas will give a modulus of elasticity less than the tension and com-
pression modulus, the error increasing as the span is reduced.  The elastic properties given in
such tables as are included in Bulletin 336 were determined in this way. These standard
bending specimens have a span depth ratio of 14, for which ratio the modulus of elasticity in
shear is about 10 per cent below the true modulus in tension and compression.

However. if these values are used in design theyv will give correet deflections for solid ree-
targular beams of the same span-depth ratio if substituted in the usual formulas with which
they were determined. Furthermore, for ordinary spans. say from 12 to 28 times the depth of
beam. they will give values correct within 5 percent.  For shorter spansit would be preferable to
use the more exact formulas which take into account shear deformations.  There is very little
difference in the errors for center and third-peint loading.  For beams of I and box section shear
distortions are far more pronounced and errors of considerable macnitude will be introduced
even for large span-depth ratios unless the exact formulas are employved.

Box beams with ply-wood webs have a greater modulus of rigidity with the grain of the
plywood at 45° to the length of the beam than with the erain of the face plies perpendicular to
the length. Tests showed the former type to have a modulus of rigidity over three and one-half
times the latter type.
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APPENDIX.

The development of the formulas for shear deformations.

Let

We have,

BEAMS OF SOLID RECTANGULAR SECTION.

Let us assume tirst a rectangular beam supported near the ends and with a concentrated
load at the center.

- g eunib-shearing strees.
V"= total vertical shear.
I =moment of inertia of section.
b = thickness of section.
d = depth of section.
y = distance from neutral axis.
F=modulus of elasticity in shear.
f=detlection due to shear.

9= ;bJ bydy.

a well-known formula, which gives a distribution as shown in Figure 6. curve .\. This gives

Ad ‘J? r
' Vige 2
q= )i > b yby«ly=8-1-» d:—4y?).

Now, the unit shearing stress ¢ produces a deformation g‘ in planes at unit distance apart.
The work in shear per unit of volume, therefore, is

q.. q?

S E=ap
¢ VR =S8y 216y
20 128 FF

Multiplying by the element of volume b dy dr and first integrating with respect to y with
limits —d.2 and +d,2

Internal work =f 1#bd* 8 3 13dr

s pr 13" ) 5 Fed -

In the ease assumed ! is a constant and the expression becomes

B
Internal \\mk=5 b

Now, for a beam supported near the ends and loaded at the center 17= P 2 and the externai
f

N =
work is 3

We may write therefore:

P 3P
2 At <bdF

-_03PL
= pdp
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If A=the total deflection we then have for a solid rectangular beam loaded at the center

Pl 03Pl
A=4§EIT AF‘ where A =bd

In the case of a cantilever beam we would have ¥=P and

1.2 Pl PP 1.2P1
J="bar M A=gprt 4F
for a solid rectangular beam. For beam supported at the onds and loaded equally at the
third points

0.4P’l
I="bdr
where,
P’ =load at each third point,
or
0.2P1
I="%ar
where,

P =total load.
Similarly, we may show that for a uniformly distributed load P

0.15P1
J="%ar

So far these expressions for shear deformations apply only to beams of rectangular section.

I OR BOX BEAMS.

Let us now examine an I beam or. what is practically the same. a box beam. The follow-
ing notations will be used in addition to those already given:

K, =distance neutral axis to extreme fiber.

K, =distance neutral axis to inner edge of flange.

t, =width of flange.

t, = thickness of web: in box beams combined thickness of webs.

In the flange:
L N S Y B
q“l[2 ’ YUY =ay s Y.

Vv ol Iy = o d
'lz'l'f‘,[fx.”y' y*f' . y].

The distribution of shearing stress will be as shown in Figure 6, curve B.
The internal work per unit volume is

In the web:

q*;‘w dadzx

(&)

where,

da = tdy.
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~Assuming a beam of length I, loaded at the center with a load P, the external work
= Pf/2 and since the external work equals the internal work:

1 (&
Pf/2=2'ﬁj; gtdy

or

Pf_ Vl— 2p?
2 168

K
=Ry + S [ TR = Byt K2R~ K- B
1
T RPEEEAETRE R R Y T

Integrating with respect to y and substituting the limits and fur V we obtain:

g (55 K- BeK 42 B E - T3 KOV+E (AR —2K2 K2+ K9+t 3 K, 3

Note that for the limiting condition when K,= K, and t,=¢, we get f =(—)bi?2£;,—-which has

already been determined for a rectangular beam loaded at the middle.

O




Positive directions of axes and angles (forces and moments) are shown by arrows.

Axis. . Moment about axis. Angle. Velocities.
| paratiel | |
(parallel | . Li
is) : Positive . i inear -
. . Sym- to axis) | Designa- Sym-' s Designa- | Sym-| (com
Designation. bol. ! symbol. | tion bol. n!::c- tion. bol. | nentalong| Angular.
; i | axisy.
i i
A ;
Longitudinal....| X X rolling..... L | Y——Z | roll..... I e u p
......... Yy - ¥ pitching. M | Z—X | pitch.... © v q
Normal......... z z yawing..... N | X—Y | vaw..... | ¥ w r
| )
Absolute coeflicients of moment Angle of set of control surface (relative to

neutral position), 3. (Indicate surface by

proper subscript.)

4. PROPELLER SYMBOLS.

L M - N
C'—i—b-S C‘-q_cTS' Cn=m
Diameter, D

Pitch (a) Aerodynamic pitch, p.
(b) Effective pitch, p,
(¢) Mean geometric pitch. pe
(d) Virtual pitch, p,
(e) Standard pitch, p.

Pitch ratio, p/D

Inflow velocity, V”

Slipstream velocity, ¥,

5. NUMERIC.

1 P =76.04 kg. m/sec. =350 lb. ft/sec.
1 kg. m/sec.=0.01315 P
1 mi/hr. =0.44704 m/sec.
1 m/sec.=2.23693 mi/hr.

Thrust, T
Torque, Q
Power, P
“coefficients” are introduced all units
E‘s&d must be consistent.)
ncy n=T1 VP

Revolutions per sec., n; per min., N
Effective helix angle #=tan™ (.’L_)
Ixrn
REJ-ATIONS.

18b. =0.45359 kg.
f;kg. =2.20462 Ib.
1 mi.=1609.35 m. =352S0 ft.
1 m. =3.28083 ft.







